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ABSTRACT 
The present work deals with the investigation of elasto-thermo diffusion interaction of a homogeneous isotropic 

spherical shell in the context of two-temperature generalized theory of thermo-elasticity with diffusion. The 

inner and outer boundaries of the spherical shell are free from stress and subjected to a time dependent thermal 

stoke. The chemical potential is also assumed to be a function of time on the boundary of the shell. The 

governing equations are solved in the Laplace transformation by using aoperator theory. The inverse of the 

transformed solution is carried out by applying a method of Bellman et al.. The stress, conductive temperature, 

displacement, mass concentration and chemical potential are computed numerically and presented graphically in 

a number of figures for copper material. A comparison of the results for three different models two-temperature 

Lord Shulman model (2TLS), two-temperature Green Naghdi model (2TGN-III) and two-temperature three-

phase-lag model (2T3P) arealso presented for the different types of temperature field (one-temperature and two-

temperature). 

Keywords— Two-temperature generalized thermoelasticity, Three-phase-lag model, Mass diffusion, Chemical 

potential. 

 

I. INTRODUCTION 
The diffusion can be defined as the spontaneous 

migration of substances from regions of high 

concentration to regions of low concentration. The 

topic thermoelastic diffusion deals with the coupling 

effects of the fields of temperature, mass diffusion 

and strain, in addition to heat and mass exchange 

with the environment. It occurs as a result of the 

second law of thermodynamics which states that the 

entropy or disorder of any system must always 

increase with time. The recent interest in the study of 

this phenomenon is due to its extensive applications 

in geophysics and many industrial applications. The 

phenomenon of diffusion is used to improve the 

conditions of oil extractions (seeking ways of more 

efficiently recovering oil from oil deposits). 

Biot [1] develops the coupled theory of thermo-

elasticity to deal with defeat of the uncoupled theory 

that mechanical cause has no effect on the 

temperature field. In this theory, the heat equation 

has a parabolic form which predicts an infinite speed 

for the propagation of mechanical wave. The theory 

of generalized thermoelasticity with one relaxation 

time was introduced by Lord and Shulman [2]. This 

theory was extended by Dhaliwal and Sherief [3]. In 

the theory, the Maxwell-Cattaneo law of heat 

conduction replaces the conventional Fourier‟s law. 

For this theory, Ignaczak [4] studied the uniqueness 

of solution. 

Thermo diffusion in the solids is one of the 

transport processes that have great practical 

importance. Most of the research associated with the  

 

presence of concentration and temperature gradients 

has been made with metals and alloys. 

Thermodiffusion in an elastic solid is due to the 

coupling of the fields of temperature, mass diffusion 

and strain fields. The first critical review was 

published in the work of Oriani (1969). Nowacki [5], 

[6], [7], [8] developed the theory of thermoelastic 

diffusion. In this theory, classical coupled 

thermoelastic model is used. Later on, Gawinecki et 

al. [9] and Gawinecki and Kacprzyk [10] proved a 

theory on uniqueness and regularity of the solution 

for a nonlinear parabolic thermoelastic diffusion 

problem.  Sherief et al. [11] and, later on, Kumar and 

Kansal [12] introduced the generalized theories of 

thermoelastic diffusion in the frame of LS and GL 

theories by introducing thermal relaxation time 

parameters and diffusion relaxation time parameters 

into the governing equations, which allow the finite 

speeds of propagation of waves inside the medium. 

Sherief and Salah [13] investigated the problem of a 

thermoelastic half space in the context of the theory 

of generalized thermoelastic diffusion with one 

relaxation time. Aouadi [14], [15], [16], [17] also 

gave some attention on thermoelastic diffusion and 

generalized thermoelastic diffusion. The theory 

introduced by Sherief et al. [5], Kothari and 

Mukhopadhyay [18], presented the Galerkin-type 

representation of solutions for thermoelastic 

diffusion. In the context of the same theory, 

variational and reciprocity theorems have been 

established by Kumar et al. [19]. Different 

thermoelastic diffusion problems have been solved 
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employing various models of generalized 

thermoelasticity by several researchers Tripathi et al. 

[20], Abbas et al. [21], Tianhu et al. [22]. 

The most recent and relevant development in 

thermo-elasticity theory is three-phase-lag model. 

Roychoudhuri [23] established this model, in which 

the Fourier‟s law of heat conduction is replaced by an 

approximation to a modified form with the 

introduction of different phase lags for the heat flux 

vector, temperature gradient and for the thermal 

displacement gradient. According to this 

model

( , ) [ ( , ) ( , )]q Tq P t K T P t K P t           
  

, where q is the phase lag of heat flux, T  is the 

phase lag of temperature gradient,   is the delay 

time in thermal displacement gradient and K is the 

additional material constant. Three-phase-lag model 

is very useful in the problems of nuclear bonding, 

exothermic catalytic reactions, phonon-electron 

interactions, phonon-scattering etc.  

The linearized version of the two-temperature 

theory (2TT) has been studied by many authors. Chen 

and Gurtin [24] and Chen et al. [25, 26] have 

formulated a theory of heat conduction in deformable 

bodies, which depends on two distinct temperatures 

(a) the conductive temperature ϕ and (b) the 

thermodynamic temperature θ. Lesan [27] has 

established uniqueness and reciprocity theorems for 

2TT. The existence, structural stability and spatial 

behavior of the solution in 2TT have been discussed 

by Quintanilla [28]. The key element that sets the 

two-temperature thermoelasticity (2TT) apart from 

the classical theory of thermoelasticity (CTE) is the 

material parameter 0  called the temperature 

discrepancy [24].   

Specifically, if χ=0, then ϕ=θ and the field 

equations of the 2TT reduce to those of CTE. 

Although interest in the 2TT has waned since the 

1970s, the recent contributions of Quintanilla [29, 30] 

and Puri and Jordan [31] have signaled something of 

a reversal in this trend. Youssef [32] has developed 

theory of two-temperature generalized 

thermoelasticity based on LS model. El-Karamany et 

al. [33] have established uniqueness and reciprocal 

principles in two-temperature Green-Naghdi 

thermoeelasticity theories. Quintanilla [34, 35] has 

proposed a modification of the 2TT that is based on 

dual-phase-lag and three-dual-phase-lag heat 

conduction, respectively. The constitutive law for the 

heat flux vector under the 2T3P model [36] is    

                                     

( , ) [ ( , ) ( , )],q Tq P t K P t K P t               
  



which is just the previous equation with the 

conductive temperature  ϕ taking the place of T.
 

Problems related to the generalized thermoelasticity 

involving two temperatures have been investigated 

by Mondal et al. [37], Pal et al. [38], Islam et al. [39]. 

The aim of present paper is to investigate the effect 

of phase lags on elasto-thermo diffusion interactions 

in an isotropic elastic homogeneous spherical shell in 

the context of both one-temperature and two-

temperature consideringLS, GN-III and 3P models. 

The analytical expressions for the displacement 

component, thermoelastic stresses, conductive 

temperature, mass concentration and chemical 

potential are obtained in the physical domain whose 

boundaries are traction free, are subjected to a time 

dependent temperature and chemical potential. The 

Laplace transform technique is used to obtain the 

general solution. To get the solution in the physical 

domain, the inversion of the transformed solution is 

carried out by applying the method of Bellman. The 

numerical estimates of the physical quantities are 

depicted graphically for a copper like material. A 

complete and comprehensive analysis and 

comparison of results are pre-temperature and two-

temperature considering, GN-III and 3P models. 

the introduction of the paper should explain the 

nature of the problem, previous work, purpose, and 

the contribution of the paper. The contents of each 

section may be provided to understand easily about 

the paper. 

 

II. FORMULATION OF THE PROBLEM 
We consider an isotropic homogenous thermo-

elastic spherical shell with inner radius a  and outer 

radius b in an undisturbed state and initially uniform 

temperature 0T . We introduce spherical polar 

coordinate (r, θ, ϕ) with the origin at the center O of 

the cavity. Since we consider thermoelastic 

interactions with the spherical symmetric, so all the 

functions considered will be function of the radial 

distance r and the time t only. It follows that the 

displacement vector ,u


thermodynamic 

temperature θ and conductive temperature ϕ have the 

following forms: 

 ( , ),0,0 ,u u r t


( , )r t  , ( , )r t  .    (1)                                                         

 

In the context of two temperature generalized 

thermoelastic diffusion based on three-phase-lag 

theory, the equation of motion, the equation of heat 

conduction and the equation of mass diffusion in 

absence of body forces for a linearly isotropic 

generalized thermoelastic solid are, respectively, 
2

1 22
( 2 ) ,

u e C

t r r r


    
   

   
              (2) 

2
2 2 2 2

0 1 02

1
[ ] (1 )( ),

2
v T q q EK K c T e cT C

t t
            

         
 

   

                                                                                (3)
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2 2 0 2

2 .D e Dc C C Dd C         
      (4) 

Where θ is the thermodynamic temperature,   is the 

conductive temperature, and  are Lame's 

constants,  is the density, C is the mass 

concentration. 1 , 2 are the material constants 

given by 

1 2(3 2 ) , (3 2 )t c           , in which 

t  and c are respectively, the coefficient of linear 

thermal expansion and linear diffusion expansion. K  

is the coefficient of thermal conductivity, K
is the 

additional material constant; D is the diffusion 

coefficient and Ec  is the specific heat at constant 

strain; 0  is the thermal relaxation time and
0   is 

the diffusion relaxation time, T  is the phase-lag of 

temperature gradient, q  is the phase-lag of heat 

flux, also 
v vK K    , where v  is the phase-

lag of thermal displacement gradient. c and d are the 

measures of the thermo-diffusion effect and diffusive 

effect, respectively. 
2 is the Laplacian, given in our 

case by, 

2 2

2

1
.r

r r r

  
   

    
In equation (3): 

(i) When 0T  , 0v  , 0q  , v K   , then 

this theory reduces to 2TGN-III model with 

diffusion. 

(ii)When 0K   , 
00, , 0T v v qK          

and
2 0q  , then this theory reduces to 2TLS model 

with diffusion. 

The strain components are given by 

,
rr

u
e

r





, ,
u

e e
r

                                     (5)  

and thus the cubical dilatation will be 

2

2

1
2 ( )

u u
e r u

r r r r

 
  
 

,                      (6) 

The constitutive equations are given by 

1 22 ,rr

u
e C

r
     


   


              (7) 

1 2(2 ),
u

e C
r

           
 (8)                                                                                   

2 ,P e dC c                                            (9) 

 Where P is the chemical potential per unit mass of 

the diffusive material in the elastic body, ij  are the 

components of the stress tensor. 

The relation between the conductive temperature   

and the thermodynamic temperature   is given by, 
2 .                                                        (10)                                                               

Where  (>0) is the two temperature parameter. 

For convenience, the following dimensionless 

quantities are used: 

1( , ) ( , )u r c u r   , 1( , )
( , )

( 2 )

  
 

 
  


,

2

( 2 )

C
C



 
 


,

2

P
P


  ,

2

1t c t  , ,
( 2 )

ij

ij




 
 



0 2 0

0 1 0, , , , , , , , ,q v T q v Tc                      

where  2

1

( 2 )
c

 




  and .Ec

K


  Therefore, 

the governing equations are given by equations(2)- 

(4) and (7)-(10) can be expressed in the following 

forms (dropping the primes for convenience), as 
2

2
,

u e C

t r r r

   
  

   
           (11)                                           

2

0

2
2

12

[ (1 ) (1 )] (1

1
)[ ],

2

v T q

q

a
t t t t

e C
t

   

   

   
      

   


 


 

   

 (12)                                                                                                                                                                                                                                     

   

2 ,     
                                                    

(13)                          

2 2 0 2

1 2 3( ) ,e C C C                    (14)        

2

4
,rr

u
e C

r
 


                                       (15)           

2 2

2 2
(1 ) ,

u
e C

r
 

 
    

                       (16) 

3 1 .P e C     
                                         (17) 

Where, 

0 2

1

,
K

a
Kc 




2

1
1

1 2

,
c c


 


2

1
2 2

2

,
c

D




 


2

1
3 2

2

,
d c





2

0 1

2 2

1

,
E

T

c c





 2 2

,
 







2 2

1 .c  
 

 

2.1    BOUNDARY CONDITIONS: 
We assume that the medium is initially at rest 

and undisturbed. All the initial state functions are 

therefore assumed to be zero. Now, to consider the 

thermo-diffusive interactions in the medium we 

assume that the boundary of the shell ( , )r a b  are 

traction free and is subjected to a thermal stoke. The 

chemical potential is also assumed to be a known 

function of time at the boundaries of the shell. 

The boundary conditions are given by 
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(i) 
,

0,rr r a b





                                       (18)
 

(ii) 1 ( ) :H t  on , 0,r a t   

                 2 ( )H t : on , 0.r b t 
               (19)

 

(iii) 1 ( ) :P PH t  on , 0,r a t   

                 2 ( )P H t : On , 0.r b t 
              (20) 

Where 1 , 2 , 1P  and 2P are the constants and 

( )H t is the Heaviside unit-step function. 

2.2 SOLUTION IN THE LAPLACE TRANSFORM 

DOMAIN: 

 

Applying the Laplace transform defined by the 

relation, 

0

( , ) ( , ) stf r s f r t e dt



    ,  Re( ) 0,s 
 

to equation (11) and using homogeneous initial 

conditions, we get 

2 .
e C

s u
r r r

  
  
                                       (21)

 

Now applying Laplace transform on equation (12) 

and using (13), we get  

1 3 3

3 3 3

1
,

1 1 1

a a
C e

a a a

  
 

  
  

  
        (22) 

Where

2 2 2

3 2

0 0

1
(1 )

2 .
[ (1 ) ]

q q

v T

s s s

a
a a s s

 

 

 


  

 

Applying divergence operator on (21), we get
 

2 2 2 2( ) .s e C     
                              

(23) 

Using equation (22), (13)-(14) and (23) becomes 
2

1 2 3 ,M M C M e                                 (24) 

2 2 2 21
1 2

3

[(1 ) ] (1 ) ,
M

M e s e M C
a

          (25)                                                          

2 2 21 1
2 3 1 2 2 4

3

(1 ) [( ) ] ,
M

M e M M C
a


           

(26)                                                                                            

  

 where,  

3
1

3

,
1

a
M

a 




3 1
2

3

,
1

a
M

a

 






3
3

3

,
1

a
M

a







0

4 (1 )M s s 

 

2

4
,rr

u
e C

r
 


                                   (27)                  

2 2

2 2
(1 ) ,

u
e C

r
 

 
                     (28)  

3 1 .P e C                                              (29) 

Now, using equations (24)-(26), we obtain 

 6 4 2

1 2 3 ( , , ) 0.b b b e C      
         (30) 

Where we used the notations 

 

1 12 2 2

3 2 3 3 2 1 1

2

1 3 3 2 1 1 3 2 1 3 2 4

2 2 2

1 1 3 1 3 2 1 3

3 2 1 1 3 3 3 2 1 1 3 3

2 2

2 1 3 2

1
[

(1 ) ( )(1 )

(1 ) (1 )

(1 ) (1 )( )

( ) ( )

(1 ) (1 ) ]

b
a M a M M

M a M M M a M M a M

M M a M s M a s

M M M a M M M a

M M a M


    

   

    

     

 


   

   

    

   

  
  (31) 

2 32 2 2

3 2 3 3 2 1 1

2 2 2 2

1 3 3 1 3 3 2 1 3 2 4 1

2 2

1 3 2 4 2 1 3 3 4

1
[

(1 ) ( )(1 )

( ) (1

) ]

b
a M a M M

M M a s M a s M a M M

M a s M M M a M


    

   

  


   

   

 
     

(32)         

2 2

3 3 2 4 12 2 2

3 2 3 3 2 1 1

1
[ ]

(1 ) ( )(1 )
b a s M M

a M a M M


    


   

                                                                            (33) 

Equation (30) can be factorized as 
2 2 2 2 2 2

1 2 3( )( )( )( , , ) 0.k k k e C         

(34)                                                               

Where 1k , 2k , 3k  are the roots with positive real part 

of the characteristic equation 
6 4 2

1 2 3 0,k b k b k b     

and are given by [41] 

1 1

1
[2 sin ],

3
k p q b                                       (35)                                           

2 1

1
[ ( 3 cos sin )]

3
k b p q q   ,                       (36)                      

3 1

1
[ ( 3 cos sin )].

3
k b p q q  

                   

(37) 

Where 

2

1 23 ,p b b 
1sin

,
3

v
q




3

1 1 2 3

3

2 9 27
.

2

b b b b
v

p

 
 

    
(38) 

Therefore, the solution of equation (30), which is 

bounded at infinity, is given by 
3

1 1
2 21

1
( , ) [ ( ) ( ) ( ) ( )],i i i i

i

r s A s I k r B s K k r
r




 
 

(39)  

3

1 1
2 21

1
( , ) [ ( ) ( ) ( ) ( )],i i i i

i

e r s A s I k r B s K k r
r 

  
  

                                                                           

(40)                                                           
3

1 1
2 21

1
( , ) [ ( ) ( ) ( ) ( )],i i i i

i

C r s A s I k r B s K k r
r 

  
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(41)                                                            

 where ,iA iA , ,iA ,iB ,iB
iB     (for i =1, 2, 3) are 

parameters depending only on s. 1 2I is the modified 

Bessel function of the first kind of order 

1 2 and 1 2K  is the modified Bessel function of 

second kind of order 1 2 . Now, from equations (24)-

(26) and (39)-(41), we obtain the following relations: 

,i
i i

i

p
A A

d
  ,i

i i

i

f
A A

d
 ,i

i i

i

p
B B

d
  .i

i i

i

f
B B

d
    (42)    

Where, 
4 2

3 2 1 2 3 1 2(1 ) [ (1 )] ,i i ip a M k M M a M M k     

2 2

3 3 2 3 2 1 3 2[ (1 ) (1 )] ,i id k a M M a M M s a M      

4 2 2 2

3 1 3 1 1 3 1 3 3 1(1 ) [ (1 ) ] .i i if a M k a M M s a M M k s a M         

 

Thus we have 

 

3
1

1 1
2 21

1
( , ) [ ( ) ( ) ( ) ( )],i

i i i i

i i

e r s A s I k r B s K k r
dr





 
  

(43) 

3
2

1 1
2 21

1
( , ) [ ( ) ( ) ( ) ( )].i

i i i i

i i

C r s A s I k r B s K k r
dr





 
     (44) 

Where   
4 2

1 3 2 1 2 3 1 2(1 ) [ (1 )] ,i i ia M k M M a M M k      

4 2 2 2

2 3 1 3 1 1 3 1 3 3 1(1 ) [ (1 ) ] .i i ia M k a M M s a M M k s a M          

  

Using the relation between u and e from (6) and from 

(43), we get the solution for the dimensionless form 

of displacement as follows: 
3

1
3 3

2 21

1
( , ) [ ( ) ( ) ( ) ( )],i

i i i i

i i i

u r s A s I k r B s K k r
k dr





  (45)                                                                  

Therefore, from equations (27)-(29), (39) and (43)-

(45), we get 
3

3 1 2
21

3

3 3 1 32
22 21

41
( , ) ( )[ ( )

4
( )] ( )[ ( ) ( )],

i
rr i i i

i i i

i
i i i i i

i i i

p
r s A s I k r

rk dr

p
I k r B s K k r K k r

rk d

 









 

 




 

(46) 

3

4 1 32
2 21

3

4 1 32
2 21

21
( , ) ( )[ ( ) ( )]

2
( )[ ( ) ( )],

i
i i i i

i i i

i
i i i i

i i i

p
r s A s I k r I k r

rk dr

p
B s K k r K k r

rk d

 









 

 





 (47)      

3

5 1 1
2 21

1
( , ) [ ( ) ( ) ( ) ( )].i i i i i

i

P r s A s I k r B s K k r
r




                                                                    

                                                                               (48) 

Where, 3 1 ,i i
i

i i

p f

d d
   

4 2

2
(1 ) 1 ,i i

i

i i

p f

d d



   

3
5 1 .i i

i

i i

p f

d d


      

To evaluate the unknown parameters, we shall use 

the Laplace transformation of the boundary condition 

(18)-(20), together with equations (39), (46) and (48); 

we have the following set of six linear equations in 

six unknowns: 
3

3 1 32
2 21

3

3 1 32
2 21

4
( )[ ( ) ( )]

4
( )[ ( ) ( )] 0,

i
i i i i

i i i

i
i i i i

i i i

p
A s I k a I k a

ak d

p
B s K k a K k a

ak d











 

 




 

(49)  

3

3 1 32
2 21

3

3 1 32
2 21

4
( )[ ( ) ( )]

4
( )[ ( ) ( )] 0,

i
i i i i

i i i

i
i i i i

i i i

p
A s I k b I k b

bk d

p
B s K k b K k b

bk d











 

 




 (50)                                                                      

3
1

1 1
2 21

[ ( ) ( ) ( ) ( )] ,i i i i

i

a
A s I k a B s K k a

s





     (51)                                                                   

3
2

1 1
2 21

[ ( ) ( ) ( ) ( )] ,i i i i

i

b
A s I k b B s K k b

s





     (52) 

3
1

5 1 1
2 21

[ ( ) ( ) ( ) ( )] ,i i i i i

i

P a
A s I k a B s K k a

s




    (53)                                                               

3
2

5 1 1
2 21

[ ( ) ( ) ( ) ( )] .i i i i i

i

P b
A s I k b B s K k b

s




 
     

(54) 

 We can obtain the 1( ),A s 2 ( ),A s 3( ),A s 1( ),B s
 

2 ( ),B s 3 ( )B s  by solving the above linear system of 

equations (49)-(54). This completes the solution of 

the present problem in the Laplace transform domain. 

 

III. NUMERICAL RESULTS AND 

DISCUSSION: 
In order to illustrate theoretical results in the 

preceding sections, we now present some numerical 

results. To get the solutions for the displacement, 

radial stress, shear stress, conductive temperature, 

thermodynamic temperature, chemical potential and 

mass concentration in the physical domain, we have 

to apply Laplace inversion formula to the equations 

(43)-(48) respectively. Here we adopt the method of 

Bellman et al. [40] for inversion and choose a time 

span given by seven values of time ,it i =1 to 7 at 

which ,ru ,rr , P  and C are evaluated from the 

negative of logarithms of the roots of the shifted 

Legendre polynomial of degree 7. For the illustration 
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we consider copper material with material constants. 

The physical data in SI units for which given as 

follows [41]: 
10 27.76 10 . ,N m  

10 23.86 10 . ,N m  
38954 . ,kg m  1 1386 . ,K W m  

 
1 1383.1 . . ,EC J kg    0 293 ,   1 5.43, 

4 3 11.98 10 ,c m kg    5 11.78 10 ,t
   

0.0168,  4 2 1 21.2 10 s ,c m    
6 5 1 10.9 10 s ,d m kg   

2 0.533,  3 36.24, 

0.1.   

Also we have taken  
0

0 01, 0.1, 0.2, 0.1, 0.15, 0.01.v q T          

  

and 1R   for computational purposes. In G-N theory 

K
 is an additional material constant depending on 

the material. For copper material K
 is taken 

as
( 2 )

4

Ec
K

  
 .The computed results of the 

radial stress, shear stress, displacement, conductive 

temperature, mass concentration and chemical 

potential against r are displaced in figures 1-6, for 

2T3P ( 0.1  ) and 1T3P ( 0.0)  ; 2TGN-III 

( 0.1)   and 1TGN-III ( 0.0)  ; 2TLS 

( 0.1)   and 1TLS ( 0.0) 
 

models 

respectively. The computations were carried out for 

times 0.026t  and 0.35t  . The variation of the 

fields is observed when the step input of temperatures 

with φ1=1 and φ2=1 and step input of chemical 

potential with P1=1 and P2=1   are applied on the 

inner boundary 1a  and outer boundary 2b  of 

the shell. In all the graphs, the solid lines represent 

results for 3P model, the dotted lines represent results 

for GN-III model and the dashed lines represent 

results for LS model. 

 

Fig. 1(a):  Distribution of radial stress rr  at 

0.026.t   
 

 

Fig. 1(b):  Distribution of radial stress rr  at 

0.35.t   
 

Figures 1(a) and 1(b) are plotted to show the 

variation of radial stress rr  against radial distance 

r in context of 3P, GN-III and LS models for one-

temperature ( 0.0)  and two-temperature 

( 0.1)   inside the spherical shell at times 

0.026t  and 0.35t  respectively. At both the 

boundaries, the radial stress is noted to be zero, 

which agrees with the theoretical boundary 

conditions. At lower time ( 0.026)t   radial stress 

is fully compressive for two-temperature models and 

1TGN-III and 1TLS models, whereas for 1T3P 

model it shows some positive values in the region 

1.31 1.73r   but as time increases it becomes 

tensile near the boundaries and fully compressive at 

the middle zone in all cases. Moreover, the influence 

of diffusion is more significant near boundaries at 

lower time, whereas with the increase of time the 

region of influence shifts towards the middle of the 

shell under all consideration. The trend of variation 

of this field is almost similar for both one-

temperature and two-temperature, but significantly 

higher magnitude of the radial stress is indicated for 

0.1  as compared to 0.0  at lower time. 

Although rr takes negative values in most of the 

considered region but this field shows some positive 

values near outer boundary at 0.35t   for all the 

three models. The effect of diffusion is more 

prominent in case of 3P model in comparison with 

GN-III and LS models for both types of temperature 

field. 
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Fig. 2(a): Distribution of shear stress   at 

0.026.t   
 

 
Fig. 2(b): Distribution of shear stress   at 

0.35.t   
 

Figures 2(a) and 2(b) represent the variation of 

shear stress   against radial distance r  inside the 

spherical shell for the same set of parameters 

considering 3P, GN-III and LS models. Shear stress 

is fully compressive for the current problem at all 

times. The magnitude of   is large for two-

temperature ( 0.1)   when 0.026t  and for 

one-temperature ( 0.0)   when 0.35t   for all 

three models, as demonstrated by radial stress. The 

effect of diffusion on this field increases significantly 

with increase of time under 3P, GN-III and LS 

models and this effect is visible at the boundaries, as 

well as in the middle zone of the shell. At lower time, 

the difference among the three models is noted to be 

prominent in the case of one-temperature than that of 

two-temperature. This difference decreases with the 

increase of time. 

 
Fig. 3(a): Distribution of displacement u  at 

0.026.t   
 

 
Fig. 3(b): Distribution of displacement u  at 

0.35.t   
 

In figures 3(a) and 3(b), the space variation of 

the displacement u inside the spherical shell are 

observed for 3P, GN-III and LS models in the case of 

both 0.0   and 0.1.   The graphs of 

displacement under GN-III and LS models are almost 

merged together, but 3P model predicts a 

significantly different value as compared to the 

previous two models at both lower and higher time. 

A significant effect of diffusion on displacement field 

under 1T3P model is observed and this effect 

increases with the passage of time. The absolute 

value of u  increases with the increase of time in all 

cases. 

 
Fig. 4(a): Distribution of conductive temperature 

at 0.026.t   

 
Fig. 4(b): Distribution of conductive temperature 

at 0.35.t   
 

Figures 4(a) and 4(b) display the variation of 

conductive temperature  versus the radial 

distance r . From the figures, it is observed that at 

both the boundaries 1r  and 2r  the magnitude 

of the conductive temperature is 1, where the step-
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input temperature is imposed. We find that initially 

the temperature field shows the maximum value at 

both boundaries and it decreases with increase of 

radial distance towards the middle, becoming 

minimum at the middle except 1T3P model at 

0.35t  . At lower time, the effect of diffusion is 

not significant of this field, but as time passes, a mild 

effect is observed under 3P, GN-III and LS models. 

However, GN-III and LS models predict very close 

values of the field at higher time but at lower time all 

three models (3P, GN-III, LS) – show significantly 

different values for both 0.0   and 0.1.   

This field also increases with the increase of time in 

all cases. 

 
Fig. 5(a): Distribution of mass concentration 

at 0.026.t   
 

 
Fig. 5(b): Distribution of mass concentration 

at 0.35.t   
 

Figures 5(a) and 5(b) show the variation of mass 

concentration (C) against radial distance r  inside the 

spherical shell for the thermoelastic diffusive 

medium. Like the temperature field, under all the 

three models (3P, GN-III, LS) the mass concentration 

shows maximum value near the boundaries and it 

decreases with increase of radial distance towards the 

middle and becomes minimum at the middle of the 

shell except 1T3P model at 0.35.t   
The 3P model predicts a significantly different 

value as compared to the other two models for both 

types of temperature field. As time passes, the 

difference between GN-III and LS models for this 

field decreases and they vary in exactly the same 

way. The magnitude of C is large for 0.1   at 

0.026t   and for 0.0   at 0.35t   for all 

three models (3P, GN-III, LS). The values of this 

field increase with the time. 

 
Fig. 6(a): Distribution of chemical potential at 

0.026.t   
 

 
Fig. 6(b): Distribution of chemical potential at 

0.35.t   
 

Figures 6(a) and 6(b) are plotted to study the 

variation of chemical potential P  versus r  for both 

small and large time in the case of three different 

thermoelasticity models (3P, GN-III, LS) by taking 

0.0   and 0.1.  The chemical potential is 

noted to be 1 at both the boundaries, which agrees 

with the initial boundary conditions. At both lower 

and higher time, the difference between chemical 

potential are more prominent under 2T3P, 2TGN-III, 

2TLS models as compared to 1T3P, 1TGN-III, 1TLS 

models. 

In all the figures, the result agrees with that of 

[18] and [42] for LS model considering thermoelastic 

diffusive medium.  

 

IV. CONCLUSIONS 
The problem of investigatingthe radial stress, 

shear stress, displacement, conductive temperature, 

mass concentration and chemical potentialin an 

isotropic elastic homogeneous spherical shell of the 

thermoelastic diffusive medium is studied in the 

lightof  2TLS, 2TGN-III and 2T3P models. We also 

compare our results with the corresponding results of 

one-temperature. The analysis of the results permit 

some concluding remarks: 

1. The presence of diffusion plays an important role 

in all the physical quantities. It is observed that the 
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influence of diffusion is more significant on radial 

stress, shear stress and displacement, as compared to 

temperature field, for our present problem. We also 

noticed that the influence of diffusion on rr  and 

  is more significant near the boundaries at lower 

time, whereas with increase of time the region of 

influence shifts towards the middle of the shell. 

2. The significant differences in the physical 

quantities are observed for all the one-temperature 

models and two-temperature models. Two-

temperature theory is more realistic than the one-

temperature theory in the case of generalized 

thermoelasticity. 

3. This paper is established based on 3P model. The 

assumption of 3P model that includes three-phase-

lags in the heat flux vector, the temperature gradient 

and in the thermal displacement gradient. This is 

more general model that reduces to the GN-III and 

LS models as special cases. 

4. The results analyzed through this problem should 

be beneficial for researchers working in the fields of 

material science, low temperature physics, design of 

new materials, geophysics and other industrial 

applications. 
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